Time series

import pandas as pd
import numpy as np

data = pd.read_csv('../data/macrodata.csv')
data.head()

year

quarter

realgdp

realcons

realinv

realgovt

realdpi

cpi

m1

tbilrate

unemp

pop

infl

realint

0

1959.0

1.0

2710.349

1707.4

286.898

470.045

1886.9

28.98

139.7

2.82

5.8

177.146

0.00

0.00

1

1959.0

2.0

2778.801

1733.7

310.859

481.301

1919.7

29.15

141.7

3.08

5.1

177.830

2.34

0.74

2

1959.0

3.0

2775.488

1751.8

289.226

491.260

1916.4

29.35

140.5

3.82

5.3

178.657

2.74

1.09

3

1959.0

4.0

2785.204

1753.7

299.356

484.052

1931.3

29.37

140.0

4.33

5.6

179.386

0.27

4.06

4

1960.0

1.0

2847.699

1770.5

331.722

462.199

1955.5

29.54

139.6

3.50

5.2

180.007

2.31

1.19

data.year
0      1959.0
1      1959.0
2      1959.0
3      1959.0
4      1960.0
        ...  
198    2008.0
199    2008.0
200    2009.0
201    2009.0
202    2009.0
Name: year, Length: 203, dtype: float64

dt

temp

0

2019-12-18 21:54:00

4.61

1

2019-12-18 21:59:00

4.61

2

2019-12-18 22:04:00

4.61

3

2019-12-18 22:09:00

4.59

4

2019-12-18 22:14:00

4.59

...

...

...

56

2019-12-19 09:58:00

8.28

57

2019-12-19 10:19:00

8.68

58

2019-12-19 10:20:00

8.68

59

2019-12-19 10:22:00

8.68

60

2019-12-19 10:23:00

8.68

61 rows × 2 columns

Last updated

Was this helpful?